
MATHEMATICS OF COMPUTATION 
VOLUME 62, NUMBER 206 
APRIL 1994, PAGES 875-883 

RANK-ONE DRINFELD MODULES ON ELLIPTIC CURVES 

D. S. DUMMIT AND DAVID HAYES 

ABSTRACT. The sgn-normalized rank-one Drinfeld modules 0 associated with 
all elliptic curves E over Fq for 4 < q < 13 are computed in explicit form. 
(Such 0 for q < 4 were computed previously.) These computations verify 
a conjecture of Dorman on the norm of j(q) = aq+l and also suggest some 
interesting new properties of 0 . We prove Dorman's conjecture in the ramified 
case. We also prove the formula deg N(a) = q(hk - 1 + q), where N(a) is 
the norm of a and hk is the class number of k = Fq (E). We describe a 
remarkable conjectural property of the trace of a in even characteristic that 
holds in all the examples. 

In his recent paper [1] on the factorization of norms of j-invariants of rank- 
two Drinfeld modules with complex multiplications, D. Dorman conjectured 
that such norms are monic elements of Fq[x]. Dorman computed the j- 
invariants in several examples and found his conjecture valid in all of them. 
For this purpose, he used the rank-one examples from [6]. The first extensive 
computational test of the conjecture was carried out by one of us, Dummit, 
who computed the rank-one Drinfeld modules associated with all elliptic curves 
over Fq with q < 13 (see ?3 below). The results of these computations may be 
found on the microfiche card included at the end of this issue. Inspired by these 
computations, one of us, Hayes, proved Dorman's conjecture when the infinite 
place is ramified (see ?2 below). In ?3, we describe an algorithm for computing 
the rank-one Drinfeld modules associated with any hyperelliptic curve over Fqq, 
and we prove some basic attributes of the algorithm. In ?4, we prove formulas 
for the degrees of the norm and trace of the j-invariants of Drinfeld modules 
associated with elliptic curves. These formulas were first observed computa- 
tionally. They suggest a number of interesting questions for elliptic curves with 
complex multiplications in characteristic zero. In ?5, we state some conjec- 
tures about the remarkable form of the trace term in characteristic two. These 
conjectures are supported by all our computations. 

1. NOTATIONS 

Let f(x) E Fqq[x] be a monic polynomial of odd degree n > 3, and let 
k/Fq(x) be the hyperelliptic extension obtained by adjoining a root of 

(1.1) y2= f(x) 
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if q is odd, or 

(1.2) y2 + alxy + a3y = f(x) (al, a3 E IFq, not both zero) 

if q is even, to the field of rational functions IFq (x). If q is odd, we require 
that f(x) be squarefree, which means that the affine plane curve defined by 
(1.1) has no singular points. For q even, we restrict f(x) and a1, a3 also by 
requiring that the affine curve defined by (1.2) be nonsingular. In either case, 
the affine coordinate ring A = IFq[x, y] is integrally closed in k . 

Since n is odd, the infinite place of Fq(x) ramifies in k/lFq(x). Let o0 
denote its unique extension to k, and let ko, be the completion of k at 00. 
It is clear from either (1.1) or (1.2) that 7r_ = x(n-')!2/y is a uniformizer in 
kc, and therefore determines a unique sign function sgn: kco -+ Fq such that 
sgn(7rc0) = 1 . Since 7r2 IX is a 1-unit at o0, we conclude that sgn(x) = 1 , and 
so also sgn(y) = 1. 

The ring A is the ring of functions in k which are holomorphic away from 
ox. Let 0 be a sgn-normalized rank-one Drinfeld A-module defined over the 
algebraic closure of k. Then 0 is determined by its values 

(1.3) ox =x+aF+F2, 

(1.4) oy =y+c1F+C2F2+ +cn_lFn-I +CnFn, 

where cn = sgn(y) = 1 , the coefficients a, c1, C2, ... , Cn_ are elements of the 
Hilbert class field H of A, and F is the Frobenius endomorphism satisfying 
Fc = CqF for any c in the algebraic closure of k. Since oo is of degree one, 
the degree hk = [H: k] is the class number of the function field k as well as 
the class number of the Dedekind domain A. Let B be the integral closure of 
A in H. One knows that the coefficients of qx and qy actually belong to B. 
In fact, a generates H over k, and the coefficients of ox and qy generate B 
over A. For the theory of rank-one Drinfeld modules, the reader may consult 
[10] or Chapter IV of [3]. 

Equation (1.3) defines a rank-two Drinfeld IFq[x]-module, and we may under- 
stand (1.4) to mean that this rank-two module allows "complex multiplications" 
by A. The isomorphism invariant j(q) = aq+1 (cf. [4]) is the Drinfeld analogue 
for the j-invariants of elliptic curves in characteristic zero which admit complex 
multiplications by the full ring of integers of an imaginary quadratic number 
field. The results in [1] provide an explicit formula for the ideal factorization 
of the norm 

J(O) = NormH, 1F(x)(J(S)) 

in Fq[xl for odd q, the Drinfeld analogue of the remarkable results of Gross 
and Zagier [5]. Dorman conjectured that J(b) is monic (or "positive" with 
respect to the sign function sgn), which implies that his explicit formula actually 
computes J(b) as a polynomial in x. 

2. PROOF OF DORMAN'S CONJECTURE 

We shall show that a is totally positive for the sign function sgn. This means 
that sgn(e(a)) = 1 for every embedding e: H -+ kc. As a corollary, we see 
that NormH,k (a) is sgn-positive, and hence that J(b) is a positive (or monic) 
polynomial in x. Our main tool is 
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Theorem 1. Let KX = H(A,), where A, is the IFq-vector space of x-torsion 
points for the A-module Xb. In fact, KX is the splitting field of 

(2.1) (x(t) = xt + atq + tq2 

over H. Then Kx/k is abelian, and the inertia group G,o at oc in Gal(Kx/k) 
is isomorphic to IF . The "real subfield" Kx+ of KX is the fixed field of G,, . 
The k-place oc splits completely in Kx+/k, and the group of norms from Kxl 
down to (Kx+) X consists of totally positive elements of Kx+ . 

This theorem follows from the results in ?4 of [8]. The field KX is a "cy- 
clotomic function field" over k, and the last statement of the theorem is the 
analogue of the fact that norms from any cyclotomic extension of Q into its 
real subfield are totally positive. 

Let A E Ax generate the x-torsion over A, and put Y = _Aq-1 By Theorem 
4.17 of [8], Y is a norm from KX and is therefore a totally positive element 
of Kx+ . Now by (2.1), x - aY + yq+1 = 0, which implies that 

(2.2) a = xY-1 + yq. 

Let vO, be the normalized valuation induced on Kx+ by some fixed embedding 
e of Kx+ into ko . Since sgn(x) = 1 by choice of sgn, a is a sum of two 
positive elements in the embedding e. Therefore, a will also be positive in e 
if these two elements have different valuations in ko,, i.e., if 

v (Yq) = V(xY-1) = -2- v (Y) 
is false. But this equality implies that vo,, (Y) = -2/(q + 1), which is impossible 
as oo is unramified in Kx+/k. 

3. THE ALGORITHM 

Let R be any k-algebra. Since x and y generate the ring A as an Fq- 
algebra, producing a sgn-normalized rank-one Drinfeld A-module over R is 
equivalent to producing two polynomials ox and Oy with coefficients in R as 
in equations (1.3) and (1.4), so that the map defined by x I-+ Ox, y I y is 
a homomorphism of A into the noncommutative ring of twisted polynomials 
in the Frobenius endomorphism F with left-coefficients in R. A necessary 
condition for such a map to be a homomorphism is that ox 4y = yOxk, and 
the key to the explicit computation of such modules is the observation in [9] 
that this necessary commutativity relation is also sufficient. One quick proof 
of this fact (due to M. Rosen) goes as follows. Suppose G(x, y) = 0 for 
some polynomial G(X, Y) E Fq[X, Y] . Since the constant term of the twisted 
polynomial G(Ox, qy) is G(x, y) = 0, the lowest-order term of G(Ox, qy) is 
of the form dmFm for some m > 1 . Since ox and qy commute by assumption, 
OxG(Ox, q$y) = G(Ox , Oy)Ox and comparing coefficients of the lowest-order 
terms gives Xdm = dmXqm, and so dm = 0. Hence, G(Oxb q$y) = 0, showing 
that the homomorphism from the polynomial ring IFq[X, Y] to the twisted 
polynomial ring in F with left-coefficients in R defined by X l-+ x x, Y I-+ qy 
factors through A. 

This reduces the computation of Drinfeld A-modules over R to the deter- 
mination of two twisted polynomials as in (1.3) and (1.4) that commute. Com- 
paring coefficients of Fi, i = 0, 1, ... , n + 1, in the relation Oxq$y = qyqOx 
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gives n + 2 equations in the coefficients a, cl, c2, ... , cn-I . The first of these 
equations is trivially satisfied, and the next n - 1 equations recursively define 
cl, c2, ... , Cn- in terms of x, y, and a. Substituting these expressions for 
the ci into the last two equations, one obtains two equations in a with co- 
efficients in k. Clearing the denominators gives two polynomials P(a) and 
Q(a) with coefficients in A that a must satisfy, so that a must be a zero of 
the greatest common divisor T(a) of these two polynomials. Conversely, any 
zero a of T(a) in R (with corresponding ci) defines two commuting twisted 
polynomials, hence defines a rank-one Drinfeld module. Hence, the explicit de- 
termination of the Drinfeld A-modules over R is reduced to the computation 
of the greatest common divisor of P(a) and Q(a). 

In the case n = 3, k is the function field of an elliptic curve, and the 
equations arising from the relation Oxoy = Oyox are 

xy = yx , 

xc1 + ayq = ay + CXq 

(3.1) XC2+a + = y + cia + C2 

x + ac2 + cl2 = cl + c2a + 

a + c2= C2 + a. 

As mentioned, the first of these equations is trivial, and the next two can be 
used to solve recursively for cl, c2 in terms of x, y, a: 

(3.2) cl = Iq la(yq_y), c2 = I- (yq _ y + acq q). 

When these expressions for cl and c2 are substituted into the last two equations 
in (3.1) and the denominators cleared, we obtain two polynomials P(a) (of 
degree q2 + q + 1) and Q(a) (of degree q3 + q2) in a with coefficients in A. 

Theorem 2. (1) The polynomial T(a) is integral with respect to A and is sepa- 
rable and irreducible of degree hk, the class number of the field k . 

(2) ("purity") If q is even, the coefficients of T(a) are elements of Fq[x]. 
Suppose a specialized to a zero of T(a) in H. Then Fq(x, a) is an extension of 
Fqq(X) of degree hk; i.e., Gal(H/IFq(x, a)) splits the extension of Gal(H/Fq(x)) 
by Gal(H/k). If q is odd, the coefficient of ah-i in T(a) is an element of Fqq[x] 
if i is even, and an element of y * Fqq[x] if i is odd. Further, Fq(x, a2) is an 
extension of Fq(x) of degree hk; i.e., Gal(H/Fq(x, a2)) splits the extension of 
Gal(H/Fq(x)) by Gal(H/k). 
Proof. The fact that T(a) is integral with respect to A is immediate from the 
fact that a is an integral element over A. Since the zeros of T(a) in H de- 
fine all of the sgn-normalized rank-one Drinfeld A-modules, these zeros are all 
conjugate under the Galois group of H over k, so T(a) is a power of the 
minimal polynomial for a over k. The separability of T(a) is a consequence 
of the fact that over B the Drinfeld module defined by (1.3) and (1.4) is a uni- 
versal rank-one Drinfeld A-module (cf. Theorem 1 of [9]), as follows. Suppose 
T(a) = p(a)e for some polynomial p(a) E A[a] and some integer e > 1. Then 
there exists a Drinfeld A-module over the k-algebra R = k[z]/p(z)e. By the 
universality of 0 , there exists a homomorphism from B to R extending the 
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inclusion map of A into k and mapping a to z E R that carries the Drin- 
feld module on B to the Drinfeld module on R. Since this map carries p(a) 
(a E B) onto p(z) E R, p(a) = 0 implies p(z) = 0 in R, and so e = 1 and 
p(z) must be separable. 

To prove (2), let Gal(k/IFq(x)) = {l, }, T2 - 1, and let T be extended in 
some way to an automorphism of H/Fq (x). Let 2 be the set of sgn-normalized 
Drinfeld A-modules, and let 0* = T o a o T. The elements of Z are also 
normalized A-modules. If q is even, then 0. = 2, whereas if q is odd, then 
0. consists of the sgn*-normalized A-modules, where sgn* (x/y) = -1 . 

Assume first that q is odd, and choose 4 such that Q1-q = -1. Then 
40b-1 E 0. and so -= T (oq) a z for some a E Gal(H/k). We see that 

xb`1 = x - aF + F2 = x + aF + F2, 

which implies (replacing T by CT) that aT = -a, so that T2 = 1 on H. The 
subgroup of order 2 generated by T splits the extension of Gal(H/IFq(x)) by 
Gal(H/k). Since a2 is fixed by T and a is obviously quadratic over the field 
generated by a2, this implies that a2 generates an extension over lFq(x) of 
degree hk . The statements regarding the coefficients of T(a) are equivalent to 
aT = -a. 

If q is even, 0. = , and the same argument shows that we can assume 
T chosen so that al = a. Now a itself generates an extension over IFq(x) 
splitting the extension of H/Fq,(x) by H/k. ol 

Remark. When n = 3, the results of Theorem 2 can also be proved directly 
from the explicit form of the relations in (3.1), as follows. If T(a) were not 
separable as a polynomial in a, then P(a), Q(a), OP(a)/Oa, and aQ(a)/Oa 
would all have a zero in common. The second and third equations in (3.1) give 

ac - yq - = ci/a, (xq2 x) aC2= cq aq aq c 

From aQ(a)/aa = 0 we obtain ac2/&a = 1. The second equation above 
together with (3.2) then gives 

yqY 2 _yq -yq 
xq2 _ X = aq aq _Y 

which implies that a generates a purely inseparable extension of k, contradict- 
ing the fact that a generates H. 

For (2), observe first that the "purity" assertions regarding the coefficients of 
T(a) are valid for the polynomials P(a) and Q(a). Now if the coefficients 
of two polynomials a and fi are "pure", then it is easy to see that in any 
polynomial division of a by , the coefficients of the remainder are also "pure". 
It follows that the coefficients of the greatest common divisor T(a) of P(a) and 
Q(a) have "pure" coefficients. The remaining statements in (2) follow easily 
from the purity. 

The polynomials T(a) for all elliptic curves with q < 13 have been com- 
puted and for 4 < q < 13 appear in the microfiche supplement (the cases 
q = 2, 3 can be found in [9]). See [2] for some examples of T(a) for genus- 
two curves. Even for relatively small q, the direct computation of the greatest 
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common divisor of the polynomials P(a) and Q(a) exceeds both patience and 
memory capacity. Instead, the computations were performed modulo primes 
7r(x) in IFq[x] (generally of degree 5) that are inert in the field k . For odd q the 
prime 7r(x) E IFq[x] of degree N is inert in k if f(X)(qN 1)/2 = -1 mod 7(x), 
and since qN - 1 = (q - 1)(1 + q + .. + qN-l), this power of f(x) can be 
rapidly computed using the Frobenius map. For even q a slight variant of this 
test is used. Computing modulo 7r(x) keeps the degrees of the coefficients of 
the polynomials in a manageable (of degree at most N - 1 in x and 1 in y 
if z(x) has degree N) . The Euclidean algorithm was then applied to the poly- 
nomials P(a) and Q(a) in (k[x, y]/(z(x)))[a], keeping the remainder monic 
at each step by multiplying by a suitable element of A. (This avoids the need 
for working with rational functions in the succeeding divisions). The Chinese 
Remainder Theorem was then used to reconstruct T(a) from the computed 
polynomials T(a) mod z(x) . For the most part, the computations were per- 
formed using the Mathematica software system. For the cases q = 4, 8, and 9, 
Mathematica was also used as a front-end to handle the symbolic computations 
(computing the relations P(a) and Q(a) modulo 7r(x), for example), passing 
many of the operations on polynomials with coefficients in finite fields to the 
PARI GP calculator. (This produced a performance factor increase of nearly 
1000 on some computations.) As checks on the computations, the degree of 
T(a) was computed independently (being the class number of k, it is just the 
number of IFq-rational points on the given elliptic curve), and the constant term 
was checked against the prime-ideal factorization given by Dorman's Theorem 
[1]. 

4. DEGREES OF THE TRACE AND NORM TERMS 

Throughout this section we assume that n = 3, so that k is the function 
field of an elliptic curve, and therefore has genus g = 1 . It follows that the set 
SD of prime ideals of degree one in A is a set of representatives for the hk - 1 
nontrivial ideal classes in the class group Pic(A) of A. Let e = A denote the 
unit ideal. 

Assuming the notation of ?2, we fix an embedding e: Kx -+ ko. Let C 
be the completion of the algebraic closure of koo . The embedding e extends 
(noncanonically) to an embedding, also called e, of Kx into C. The image 
e(xA) of the principal ideal xA in this embedding is a lattice in C. Therefore, 
there is an invariant 4(xA) E C such that the rank-one Drinfeld module q = or 
determined by the homothetic lattice 17 = 4(xA) * xA is sgn-normalized (see 
[7]). A generator A of Ax for this q may be constructed analytically in C as 
follows: 

(4.1) A = 4(xA) II (1-). 
yExA-{0} 

One knows (see Theorems 4.12 and 5.1 of [8]) that if the fractional ideal a of 
A is prime to x, then 

(4.2) Aaa a= (xac 1) j (1-1) 

yExa-1 -{?} 

where ua is the Artin isomorphism of Kx/k associated with a. If v,oO is 
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the normalized valuation on K,+ induced by the embedding e, then we write 
deg z = -v,, (z) for every z E K+ 

Theorem 3. Let 

T(a) = TraceH,k(a) and N(a) = NormH,k(a) 

be the trace and norm terms of the polynomial T(a). Then deg T(a) = q2 and 
deg N(a) = q(hk - ? + q) . 

Proof. For p E Y and 0 $ y E xp we have degy > degxp-r = 1, as 
degx = 2 and deg p = 1. It follows then from (4.1) and (4.2) with a = p that 

deg)A = deg (xA) and deg A'p = deg (xp - 1) 

for all p E SD which are prime to x. Now by equation (4.2) of [7], with g = 1, 
for any fractional ideal a of A, we have 

degg(a) + deg a = #F (a) - q (q ) 

where 
FI(a) = {y E a: degy = I +dega}. 

It is easy to check that F1 (a) is invariant on the ideal classes in Pic(A) . There- 
fore, when p E SD is prime to x, 

degA'P +1 =#F(p-) -)q ( i2) 

which implies that 

(4.3) deg Y'l = (q - 1) -#Fj (p- 1)+ I + q_-q2, 

where Y = _q. A similar computation yields 

(4.4) deg Y = (q - 1) #F1(e) + 2 - q2. 

In order to compute #Fl(e) and #F1(p-1), for any fractional ideal a, we 
define 

Ti(a) = L(a-lIodega+l) - {y E a: degy < dega+ 1}. 

Since deg(a- 1 ocdeg a+ 1) = 1 > 2g - 2, 

#Ti (a) = q 

by the Riemann-Roch Theorem. For p E .2, we have T1 (p-1) - F1 (p- 1) U {0}, 
since otherwise p would be a principal ideal. It follows that #F1 (p- 1) = q - 1. 
Further, e contains Fq, and so Ti(e) = Fq, which implies that #F1 (e) = 0. 
We conclude from (4.3) and (4.4) that 

(4.5) degY=2-q2 

and that 
deg Y'P = 2 - q 

for every p E 3Y which is prime to x. 
Assume first that x is inert in k/Fq(x), so that every p E SD is prime to x. 

Since deg Y < 0 by (4.5), it follows from (2.2) that 

(4.6) deg(a) = deg(xY-1) = 2 - (2 - q2) = q2 
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Similarly, for every p E 39, 

(4.7) deg(a', ) = deg(xY-P ) = 2 - (2 - q) = q. 

The theorem follows easily from the evaluations (4.6) and (4.7). 
Assume next that x splits or ramifies in k/Fq(x), and let p E 3 divide x. 

By the weak approximation theorem, we may find an element z E k such that 
deg z = 0 and zp is prime to x. The calculations leading to (4.7) are valid 
with p replaced by zp, and so the theorem follows in this case also. El 

5. THE TRACE TERM 

The trace of a, T(a) = TraceH,k (a), exhibits some interesting behavior in 
all the computed examples, particularly in the case of even characteristic. When 
q is even, the elliptic curve in (1.2) can be taken to be in one of the following 
two forms [11, Appendix A]: 

y2 +Xy=x3 +a4X2 +a6, 

y2 +a3y = X3 +a4X +a6, a3 :$O. 

The hyperelliptic involution y -+ y + x (respectively, y -+ y + a3) has precisely 
two (respectively, one) fixed point, so the class number hk for the first form 
above is always even, for the second form always odd. For all elliptic curves for 
q = 2, 4, 8, and for some additional examples with q = 16, the trace term of 
T(a) is 

X+X2+X4+X8+ +Xq/2, for hk even, 

and 
Xq12 + Xq2/2 = (X + xq)ql2, for hk odd. 

Remark. When q is odd, the situation is more complicated, but in all computed 
examples the trace term is a product of y with a polynomial in x (by Theorem 
3 of degree (q2 - 3)/2 as a polynomial in x) all of whose factors in ]Fq[x] have 
degree at most q. Note that by Dorman's formula, the norm term has factors 
of degree at most n = 3. 
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